de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Biologically motivated visual control of attitude and altitude in translatory flight

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84104

Neumann,  TR
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Neumann, T., & Bülthoff, H. (2000). Biologically motivated visual control of attitude and altitude in translatory flight. Proceedings in Artificial Intelligence: Proceedings of the 3rd Workshop Dynamische Perzeption (Eds. G. Baratoff and H. Neumann), 135-140.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E400-1
Zusammenfassung
Flying insects use highly efficient visual strategies for stabilizing their motion in three-dimensional space. We present a flight control model that uses a combination of biologically inspired, visual feed-forward mechanisms for stabilizing attitude (i.e. pitch and roll angles) and altitude during translatory motion. The attitude sensor exploits the position invariant vertical intensity gradient that exists in most natural open environments to orient the upper surface of a flying agent towards the region of maximum brightness (dorsal light response). Altitude is controlled using distance information contained in the frontoventral translatory optic flow (motion parallax). Our results from open-loop computer simulations show that the signals produced by these mechanisms robustly indicate the direction of deviation from a certain attitude angle or ground distance. We argue that in a closed control loop, these qualitative signals can be sufficient for flight stabilization. We present closed-loop trajectories of a simulated agent equipped with both mechanisms, flying over a textured, uneven surface. The agent shows robust flight behavior with six degrees of freedom.