de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The neural basis of romantic love

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83797

Bartels,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bartels, A. (2000). The neural basis of romantic love. NeuroReport, 11(17), 3829-3834. Retrieved from http://journals.lww.com/neuroreport/pages/articleviewer.aspx?year=2000issue=11270article=00046type=abstract.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E3FE-2
Zusammenfassung
The neural correlates of many emotional states have been studied, most recently through the technique of fMRI. However, nothing is known about the neural substrates involved in evoking one of the most overwhelming of all affective states, that of romantic love, about which we report here. The activity in the brains of 17 subjects who were deeply in love was scanned using fMRI, while they viewed pictures of their partners, and compared with the activity produced by viewing pictures of three friends of similar age, sex and duration of friendship as their partners. The activity was restricted to foci in the medial insula and the anterior cingulate cortex and, subcortically, in the caudate nucleus and the putamen, all bilaterally. Deactivations were observed in the posterior cingulate gyrus and in the amygdala and were right-lateralized in the prefrontal, parietal and middle temporal cortices. The combination of these sites differs from those in previous studies of emotion, suggesting that a unique network of are as is responsible for evoking this affective state. This leads us to postulate that the principle of functional specialization in the cortex applies to affective states as well.