de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Other

Quantitative Durchfluss-NMR-Spektroskopie und Anwendungen der Durchfluss-NMR-Spektroskopie in Lösung, in überkritischen Fluiden und in der Gasphase

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84817

Fischer,  HH
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Fischer, H. (2001). Quantitative Durchfluss-NMR-Spektroskopie und Anwendungen der Durchfluss-NMR-Spektroskopie in Lösung, in überkritischen Fluiden und in der Gasphase.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E3C4-4
Abstract
Flow NMR spectroscopy finds more and more interest in the field of natural science, pharmaceutical industry and engineering science. Due to its broad application, flow NMR spectroscopy can give information from gaseous, supercritical and liquid substances. Besides the well-known information of NMR spectra, it is possible to observe reactions and also to investigate reaction kinetics. Hereby, acquisition of quantitative NMR spectra is still challenging. By inserting immobilized paramagnetic substances in the flow path it is possible to decrease long spin-lattice relaxation times of nuclei like 13C and protons in supercritical fluids. This will increase the signal intensity of NMR spectra in flow mode. Compared with the static experiment, the use of immobilized paramagnetic substances in the flow path and an applied flow rate of 20 ml/min leads to an increase in the signal-to-noise ratio by 75. Besides the observation of reactions themselves (e.g. amines in supercritical carbon dioxyd), flow NMR spectroscopy is useful to investigate reaction kinetics. Therefore, thermodynamic data can be obtained by quantitative analysis of NMR spectra.