de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Bound on the Leave-One-Out Error for 2-Class Classification using nu-SVMs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83946

Gretton,  A
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Herbrich R, Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gretton, A., Herbrich R, Schölkopf, B., & Rayner, P.(2001). Bound on the Leave-One-Out Error for 2-Class Classification using nu-SVMs.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E39A-4
Zusammenfassung
Three estimates of the leave-one-out error for nu-support vector (SV) machine binary classifiers are presented. Two of the estimates are based on the geometrical concept of the em span, which was introduced in the context of bounding the leave-one-out error for C-SV machine binary classifiers, while the third is based on optimisation over the criterion used to train the nu-support vector classifier. It is shown that the estimates presented herein provide informative and efficient approximations of the generalisation behaviour, in both a toy example and benchmark data sets. The proof strategies in the nu-SV context are also compared with those used to derive leave-one-out error estimates in the C-SV case.