de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Learning and Prediction of the Nonlinear Dynamics of Biological Neurons with Support Vector Machines

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84035

Lal,  TN
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Frontzek, T., Lal, T., & Eckmiller, R. (2001). Learning and Prediction of the Nonlinear Dynamics of Biological Neurons with Support Vector Machines. In Proceedings of the International Conference on Artificial Neural Networks (ICANN'2001) (pp. 390-398).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-E370-F
Zusammenfassung
Based on biological data we examine the ability of Support Vector Machines (SVMs) with gaussian kernels to learn and predict the nonlinear dynamics of single biological neurons. We show that SVMs for regression learn the dynamics of the pyloric dilator neuron of the australian crayfish, and we determine the optimal SVM parameters with regard to the test error. Compared to conventional RBF networks, SVMs learned faster and performed a better iterated one-step-ahead prediction with regard to training and test error. From a biological point of view SVMs are especially better in predicting the most important part of the dynamics, where the membranpotential is driven by superimposed synaptic inputs to the threshold for the oscillatory peak.