English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synchronous inhibition as a mechanism for unbiased selective gain control

MPS-Authors
There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bethge, M., & Pawelzik, K. (2001). Synchronous inhibition as a mechanism for unbiased selective gain control. Neurocomputing, 38-40, 483-488. doi:10.1016/S0925-2312(01)00373-3.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-E272-6
Abstract
While there are many experiments providing evidence for synchronized neuronal activity, there is little agreement about its functional role. Since many proposals rely on the assumption that neuronal activity can be modulated by top-down or feedback signals in a multiplicative way, it is a critical question how the dynamics of neurons may account for a selective control of their gain. In this paper we present a novel gain control mechanism based on the interplay of synaptic depression and synchronous inhibition. From simulations of a two-layered model of populations of integrate-and-fire neurons connected by stochastic depressing synapses, we conclude that synchronous inhibition can act as a selective gain control signal, which may be relevant, in particular when sensory processing reflects an ongoing process of hypotheses testing.