Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Driving effects of retinal flow properties associated with eccentric gaze

MPG-Autoren
/persons/resource/persons84159

Readinger,  WO
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83857

Chatziastros,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83870

Cunningham,  DW
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Readinger, W., Chatziastros, A., Cunningham, D., & Bülthoff, H. (2001). Driving effects of retinal flow properties associated with eccentric gaze. Poster presented at Twenty-fourth European Conference on Visual Perception (ECVP 2001), Kusadasi, Turkey.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-E230-9
Zusammenfassung
There has been growing evidence expressing the computational (and perhaps practical) difficulty of recovering heading from retinal flow when the observer is looking away from his path. Despite this, it is generally accepted that retinal-flow information plays a significant role in the control of locomotion. The experiments reported here attempt to address one meaningful behavioural consequence associated with this situation. Specifically, we consider eccentric gaze and its effects on automobile steering. In three conditions, we measured drivers' steering performance on a straight road, located in a textured ground plane, and presented in a 180 deg field-of-view projection theatre. Consistent with earlier findings, at eccentricities from 15 to 45 deg away from heading direction, subjects' lateral position on the road tended significantly towards their direction of gaze (p < 0.001), but eccentricities of as little as 5 deg from heading direction also significantly affected position on the road surface (p < 0.01). Furthermore, this effect was found to scale based on small (±5 deg) changes in gaze-movement angle, but not with speed of travel through the environment. We propose, therefore, a model of steering performance in such situations resulting from characteristics of the retinal flow immediately surrounding the point of fixation.