de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Detection of animals in natural images using far peripheral vision

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83926

Gegenfurtner,  KR
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Thorpe, S., Gegenfurtner, K., Fabre-Thorpe, M., & Bülthoff, H. (2001). Detection of animals in natural images using far peripheral vision. European Journal of Neuroscience, 14(5), 869-876. doi:10.1046/j.0953-816x.2001.01717.x.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E202-4
Abstract
It is generally believed that the acuity of the peripheral visual field is too poor to allow accurate object recognition and, that to be identified, most objects need to be brought into foveal vision by using saccadic eye movements. However, most measures of form vision in the periphery have been done at eccentricities below 10 degrees and have used relatively artificial stimuli such as letters, digits and compound Gabor patterns. Little is known about how such data would apply in the case of more naturalistic stimuli. Here humans were required to categorize briefly flashed (28 ms) unmasked photographs of natural scenes (39 degrees high, and 26 degrees across) on the basis of whether or not they contained an animal. The photographs appeared randomly in nine locations across virtually the entire extent of the horizontal visual field. Accuracy was 93.3 for central vision and decreased almost linearly with increasing eccentricity (89.8 at 13 degrees, 76.1 at 44.5 degrees and 71.2 at 57.5 degrees). Even at the most extreme eccentricity, where the images were centred at 70.5 degrees, subjects scored 60.5 correct. No evidence was found for hemispheric specialization. This level of performance was achieved despite the fact that the position of the image was unpredictable, ruling out the use of precued attention to target locations. The results demonstrate that even high-level visual tasks involving object vision can be performed using the relatively coarse information provided by the peripheral retina.