de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

An investigation of bootstrap interval coverage and sampling efficiency in psychometric functions

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83968

Hill,  NJ
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hill, N. (2001). An investigation of bootstrap interval coverage and sampling efficiency in psychometric functions. Poster presented at First Annual Meeting of the Vision Sciences Society (VSS 2001), Sarasota, FL, USA.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-E173-C
Abstract
The small-sample nature of the typical psychophysical experiment presents us with the problem of finding valid, accurate statistical hypothesis testing methods. In many cases it can be difficult to obtain reliable error bounds on single threshold or slope estimates, for comparison across conditions or between subjects. Monte Carlo hypothesis testing methods, in particular the various developments of Efron's bootstrap technique for estimating confidence region boundaries, have enjoyed increasing popularity over the past fifteen years as computer speed has risen to meet their demands. I shall present a summary of some comparative simulations which looked at a number of variations on the bootstrap method, and showed differences in their stability. I shall also show how Monte Carlo simulations can help to assess the efficiency of one's algorithm for stimulus placement on the psychometric function.