English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Detection of BOLD changes by means of a frequency-sensitive trueFISP technique: preliminary results

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Scheffler, K., Seifritz, E., Bilecen, D., Venkatesan, R., Hennig, J., Deimling, M., et al. (2001). Detection of BOLD changes by means of a frequency-sensitive trueFISP technique: preliminary results. NMR in Biomedicine, 14(7-8), 490-496. doi:10.1002/nbm.726.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-E155-0
Abstract
A new method is introduced to detect magnetic field modulation arising from brain activation-induced BOLD effects. This approach uses a two-dimensional high-bandwidth, high-resolution conventional gradient-echo steady-state imaging sequence known as TrueFISP. The ability to visualize changes in oxygen saturation comes from the fact that the method is sensitive to the local field. As is well known, as the oxygen saturation changes so does the local field associated with the venous blood. We demonstrate that it is possible to visualize not only venous blood with this approach on a macroscopic level for major veins, but also to measure conventional oscillatory like signal changes during activated and resting states. Unfortunately, the method has two major drawbacks. First, a long TR is needed to maximize signal changes and, second, the field must be very well shimmed or numerous experiments need to be run to find the activation, as the signal response is sensitive to the starting frequency in the resting state. Nevertheless, these images can be compared directly with anatomical images collected with the same method without the need for distortion correction.