English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging

MPS-Authors
/persons/resource/persons84137

Pfeuffer,  J
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Pfeuffer, J., de Moortele, P.-F., Ugurbil, K., Hu, X., & Glover, G. (2002). Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magnetic Resonance in Medicine, 47(2), 344-353. doi:10.1002/mrm.10065.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-E020-0
Abstract
In functional magnetic resonance imaging, a rapid method such as echo-planar (EPI) or spiral is used to collect a dynamic series of images. These techniques are sensitive to changes in resonance frequency which can arise from respiration and are more significant at high magnetic fields. To decrease the noise from respiration-induced phase and frequency fluctuations, a simple correction of the “dynamic off-resonance in k-space” (DORK) was developed. The correction uses phase information from the center of k-space and a navigator echo and is illustrated with dynamic scans of single-shot and segmented EPI and, for the first time, spiral imaging of the human brain at 7 T. Image noise in the respiratory spectrum was measured with an edge operator. The DORK correction significantly reduced respiration-induced noise (image shift for EPI, blurring for spiral, ghosting for segmented acquisition). While spiral imaging was found to exhibit less noise than EPI before correction, the residual noise after the DORK correction was comparable. The correction is simple to apply and can correct for other sources of frequency drift and fluctuations in dynamic imaging.