de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Direction asymmetries for incidentally processed walking figures

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84258

Thornton,  IM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84291

Vuong,  QC
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Thornton, I., Vuong, Q., & Bülthoff, H. (2002). Direction asymmetries for incidentally processed walking figures. Talk presented at 25th European Conference on Visual Perception. Glasgow, UK.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-DF74-C
Abstract
Recently we have begun to explore the incidental processing of biological motion. We ask whether walking figures that an observer is told to ignore still affect performance on a primary task. Using a number of different paradigms, we have shown that to-be-ignored walkers are still processed and can affect behaviour. During the course of these studies we have observed that such incidental effects are often modulated by the left - right orientation of the ignored walkers. More specifically, the extent of interference tends to be much larger when the to-be-ignored figures are shown in left profile versus right profile. Furthermore, the magnitude of the asymmetry tends to be much larger when the primary task itself is attentionally demanding. Here, we present data from two paradigms, an Eriksen flanker task and a novel 'checkerboard' task. In the latter, alternate display squares contain either a walking figure or a patch of randomly moving dots. Observers are told to ignore the walkers and have to make judgments on the relative phase of the dot patterns. Data from both tasks are used to illustrate the aforementioned direction asymmetry and the results are discussed in terms of canonical viewpoints for attentional sprites.