de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Neural model for the learning of biological motion

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84832

Jastorff,  J
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84787

Giese,  MA
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jastorff, J., & Giese, M. (2002). Neural model for the learning of biological motion. Poster presented at 25th European Conference on Visual Perception, Glasgow, UK.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-DF60-7
Zusammenfassung
Several experimental results suggest that biological movements are encoded on the basis of learned template patterns. Recent theoretical work has shown that a biologically plausible hierarchical neural model that encodes biological movements in terms of learned prototypical patterns provides a consistent explanation for many experimental results on biological motion perception [Giese and Poggio, 2002 (submitted)]. The model postulates that biological-motion patterns are encoded in terms of sequences of complex shapes and optic-flow-field patterns in the ventral and dorsal pathway. The underlying neural circuits predict future form and optic-flow patterns from the previous stimulus sequence. Electrophysiological experiments (eg Markram et al, 1997 Science 275 213 - 215) have provided evidence that Hebbian plasticity in the cortex depends critically on the relative timing between the presynaptic and postsynaptic spikes. We tested how far such time-dependent Hebbian plasticity is an appropriate mechanism for the learning of sequence selectivity in the recognition of biological movements. In addition, we tried to derive psychophysically testable predictions that would allow us to validate the predictive coding hypothesis that underlies our model.