English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Visual Homing is possible without Landmarks: A Path Integration Study in Virtual Reality

MPS-Authors
/persons/resource/persons84170

Riecke,  BE
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Riecke, B., van Veen, H., & Bülthoff, H. (2002). Visual Homing is possible without Landmarks: A Path Integration Study in Virtual Reality. Presence: Teleoperators and Virtual Environments, 11(5), 443-473. doi:10.1162/105474602320935810.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DEE7-0
Abstract
The literature often suggests that proprioceptive and especially vestibular cues are required for navigation and spatial orientation tasks involving rotations of the observer. To test this notion, we conducted a set of experiments in virtual environments where only visual cues were provided. Participants had to execute turns, reproduce distances or perform triangle completion tasks. Most experiments were performed in a simulated 3D field of blobs, thus restricting navigation strategies to path integration based on optic flow. For our experimental setup (half-cylindrical 180° projection screen), optic flow information alone proved to be sufficient for untrained participants to perform turns and reproduce distances with negligible systematic errors, irrespective of movement velocity. Path integration by optic flow was sufficient for homing by triangle completion, but homing distances were biased towards the mean response. Additional landmarks that were only temporarily available did not improve homing performance. However, navigation by stable, reliable landmarks led to almost perfect homing performance. Mental spatial ability test scores correlated positively with homing performance especially for the more complex triangle completion tasks, suggesting that mental spatial abilities might be a determining factor for navigation performance. In summary, visual path integration without any vestibular or kinesthetic cues can be sufficient for elementary navigation tasks like rotations, translations, and triangle completion.