de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Human fMRI Studies of Visual Processing in Noise

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84259

Tjan,  BS
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84453

Lestou,  V
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84023

Kourtzi,  Z
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Tjan, B., Lestou, V., Kourtzi, Z., Grodd, W., & Bülthoff, H. (2002). Human fMRI Studies of Visual Processing in Noise. Talk presented at 32nd Annual Meeting of the Society for Neuroscience (Neuroscience 2002). Orlando, FL, USA.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-DED3-D
Abstract
Processing of visual information entails the extraction of features from retinal images that mediate visual perception. In the human ventral cortex, retinotopic and higher visual areas (e.g. Lateral Occipital Complex-LOC) have been implicated in the analysis of simple and more complex features respectively. To test how processing of complex natural images progresses across the human ventral cortex, we used images of scenes and added visual noise that matched the signal in spatial-frequency power spectrum. The resulting images were rescaled to ensure constant mean luminance and r.m.s. contrast across all noise levels. We localized individually in each observer the retinotopic regions and the LOC and measured event-related BOLD response in these regions during a scene discrimination task performed at 4 noise levels. Behavioral accuracy increased with increasing signal-to-noise ratio (SNR). We found that log BOLD signal change from fixation baseline vs. log SNR is well-described by a straight line for all visual areas. The regression slope increased monotonically from lower to higher visual areas along the ventral stream. For example, changes by a factor of 8 in SNR produced little or no change to the BOLD response in V1/V2, but resulted in progressively larger increases in V4v, posterior, and anterior sub-regions of the LOC. These findings suggest that the use of visual noise can reveal the progression in complexity of the natural-image features that are processed across the human visual areas.