de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Role of featural and configural information in familiar and unfamiliar face recognition

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84420

Schwaninger,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schwaninger, A., Lobmaier, J., & Collishaw, S. (2002). Role of featural and configural information in familiar and unfamiliar face recognition. Proceedings of the Second International Workshop on Biologically Motivated Computer Vision (BMCV 2002), 243-250.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-DE5A-E
Zusammenfassung
Using psychophysics we investigated to what extent human face recognition relies on local information in parts (featural information) and on their spatial relations (configural information). This is particularly relevant for biologically motivated computer vision since recent approaches have started considering such featural information. In Experiment 1 we showed that previously learnt faces could be recognized by human subjects when they were scrambled into constituent parts. This result clearly indicates a role of featural information. Then we determined the blur level that made the scrambled part versions impossible to recognize. This blur level was applied to whole faces in order to create configural versions that by definition do not contain featural information. We showed that configural versions of previously learnt faces could be recognized reliably. In Experiment 2 we replicated these results for familiar face recognition. Both Experiments provide evidence in favor of the view that recognition of familiar and unfamiliar faces relies on featural and configural information. Furthermore, the balance between the two does not differ for familiar and unfamiliar faces. We propose an integrative model of familiar and unfamiliar face recognition and discuss implications for biologically motivated computer vision algorithms for face recognition.