de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Propagation of Uncertainty in Bayesian Kernel Models - Application to Multiple-Step Ahead Forecasting

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83845

Quiñonero-Candela,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84156

Rasmussen,  CE
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Quiñonero-Candela, J., Girard A, Larsen, J., & Rasmussen, C. (2003). Propagation of Uncertainty in Bayesian Kernel Models - Application to Multiple-Step Ahead Forecasting. In Proceedings of 2003 IEEE International Workshop on Neural Networks for Signal Processing (pp. 0-0).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-DDAE-B
Zusammenfassung
The object of Bayesian modelling is the predictive distribution, which in a forecasting scenario enables improved estimates of forecasted values and their uncertainties. In this paper we focus on reliably estimating the predictive mean and variance of forecasted values using Bayesian kernel based models such as the Gaussian Process and the Relevance Vector Machine. We derive novel analytic expressions for the predictive mean and variance for Gaussian kernel shapes under the assumption of a Gaussian input distribution in the static case, and of a recursive Gaussian predictive density in iterative forecasting. The capability of the method is demonstrated for forecasting of time-series and compared to approximate methods.