de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Temporal Properties of Shape Processing Across Visual Areas: a Combined fMRI and MEG Study

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83984

Huberle,  E
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83879

Deubelius,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Lutzenberger W, Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84023

Kourtzi,  Z
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Huberle, E., Deubelius, A., Lutzenberger W, Bülthoff, H., & Kourtzi, Z. (2003). Temporal Properties of Shape Processing Across Visual Areas: a Combined fMRI and MEG Study. Poster presented at 6. Tübinger Wahrnehmungskonferenz (TWK 2003), Tübingen, Germany.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-DD24-E
Abstract
Recent studies have shown that global information about shapes is processed in both early ventral (i.e. V1, V2, Vp, V4) and higher occipitotemporal visual areas (i.e. Lateral Occipital Complex-LOC). However, the temporal properties of shape processing across visual areas in the human brain are largely unknown. We addressed this question in a combined fMRI and MEG study that made use of the high spatial resolution of fMRI and the temporal resolution of MEG. We used an event-related adaptation paradigm in which lower neural responses are observed for two identical than two different consecutively-presented stimuli. The stimuli were closed contours that consisted of collinear Gabor elements. We manipulated the interstimulus interval (ISI: 100 vs. 400 msec) between the two consecutively-presented stimuli in each trial. To ensure comparability between fMRI and MEG results, subjects participated in both parts of the study. The fMRI results for 11 subjects showed adaptation for both the short and the long ISI in the LOC but only for the short ISI in early visual areas. The MEG data showed similar patterns of response amplitude to the fMRI data and dierences in latencies for the dierent ISIs across visual areas ranging between 70 and 160 ms. These ndings suggest sustained shape processing in higher visual areas compared to more transient visual analysis in early visual areas. Further studies test the analysis of local vs. global shape features across areas with dierent temporal processing properties.