de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Do Visual Cues Influence the Perception of Earth Vertical?

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84928

MacNeilage,  P
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83802

Berger,  DR
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84287

von der Heyde,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

MacNeilage, P., Berger, D., von der Heyde, M., Banks, S., & Bülthoff, H.(2003). Do Visual Cues Influence the Perception of Earth Vertical? (116).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-DC02-F
Zusammenfassung
Accurate perception of the direction of earth vertical can be achieved by sensing the direction of gravity in body coordinates. This is equivalent to knowing body orientation in world coordinates. There are a number of visual and non-visual cues we can use to estimate earth vertical relative to the body. Non-visual cues include the sensation of gravity and forces due to acceleration, and they can be measured by the somatosensory and vestibular systems. These systems cannot always tell us directly about the direction of gravity because they signal gravito-inertial (GI) force, which is the sum of all forces acting on the body at a given time. For example, if one is accelerating, the GI force is the sum of the force due to acceleration and the force due to gravity. In these situations, the direction of GI force does not indicate the direction of earth vertical, but visual cues may be used to resolve the ambiguity. We conducted an experiment in which the direction of GI force was manipulated by pitching observers (rotation about the body’s x-axis) on a motion platform. Their task was to indicate the direction of earth vertical using a pointing device. In some conditions, no visual stimulus was presented. In other conditions, observers were presented with a visual scene depicting acceleration over a flat, textured ground plane. Two cues in the visual display contained information relevant to judging the direction of earth vertical: 1) the location and orientation of the horizon and 2) the rate of acceleration over the ground plane. We present a model of how these visual and non-visual cues might be used to generate an estimate of the direction of earth vertical. Observer responses are compared with the predictions of this model. Results suggest that under the conditions of the present experiment, visual cues had very little effect, and perception of earth vertical was estimated primarily on the basis of vestibular and somatosensory cues.