Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Conference Paper

Sparse Gaussian Processes: inference, subspace identification and model selection


Csato,  L
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Csato, L. (2003). Sparse Gaussian Processes: inference, subspace identification and model selection. In 13th IFAC Symposium on System Identifiaction (pp. 1-6). The Netherlands: ANY PUBLISHER.

Cite as:
Gaussian Process (GP) inference is a probabilistic kernel method where the GP is treated as a latent function. The inference is carried out using the Bayesian online learning and its extension to the more general iterative approach which we call TAP/EP learning. Sparsity is introduced in this context to make the TAP/EP method applicable to large datasets. We address the prohibitive scaling of the number of parameters by defining a subset of the training data that is used as the support the GP, thus the number of required parameters is independent of the training set, similar to the case of ``Support--‘‘ or ``Relevance--Vectors‘‘. An advantage of the full probabilistic treatment is that allows the computation of the marginal data likelihood or evidence, leading to hyper-parameter estimation within the GP inference. An EM algorithm to choose the hyper-parameters is proposed. The TAP/EP learning is the E-step and the M-step then updates the hyper-parameters. Due to the sparse E-step the resulting algorithm does not involve manipulation of large matrices. The presented algorithm is applicable to a wide variety of likelihood functions. We present results of applying the algorithm on classification and nonstandard regression problems for artificial and real datasets.