de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Reynolds--uniform numerical method for Prandtl‘s boundary layer problem for flow past a wedge

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83842

Butler,  JS
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Butler, J., Miller, J., & Shishkin, G. (2003). A Reynolds--uniform numerical method for Prandtl‘s boundary layer problem for flow past a wedge. International Journal for Numerical methods in Fluids, 43, 903-913.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-DB99-3
Zusammenfassung
In this paper we deal with Prandtl‘s boundary layer problem for incompressible laminar flow past a wedge. When the Reynolds number is large the solution of this problem has a parabolic boundary layer. We construct a direct numerical method for computing approximations to the solution of this problem using a piecewise uniform fitted mesh technique appropriate to the parabolic boundary layer. We use the numerical method to approximate the self--similar solution of Prandtl‘s problem in a finite rectangle excluding the leading edge of the wedge, which is the source of an additional singularity caused by incompatibility of the problem data. We verify that the constructed numerical method is robust in the sense that the computed errors for the velocity components and their derivatives in the discrete maximum norm are Reynolds uniform. We construct and apply a special numerical method related to the Falkner--Skan technique to compute a reference solution for the error analysis of the velocity components and their derivatives. By means of extensive numerical experiments we show that the constructed direct numerical method is Reynolds--uniform.