English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

The involvement of parietal and prefrontal areas in human imitation revealed by fMRI adaptation

MPS-Authors
/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84023

Kourtzi,  Z
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lestou, V., Pollick, F., Bülthoff, H., & Kourtzi, Z. (2003). The involvement of parietal and prefrontal areas in human imitation revealed by fMRI adaptation. Poster presented at Third Annual Meeting of the Vision Sciences Society (VSS 2003), Sarasota, FL, USA.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DB89-7
Abstract
The perception and imitation of human movement requires that the brain integrates information about the goal of the movement and the kinematics that define it. Neuroimaging and neurophysiological studies implicate the ventral premotor cortex (Ba44) in the processing of action goals while the role of the parietal cortex is not entirely clear. The aim of this series of experiments was to disentangle the role of both prefrontal and parietal areas in the imitation of human movement. To this end we used human arm movements presented as point light displays. The movements were manipulated parametrically to produce morphs that differed from each other in their kinematics. Three different action types -throwing, lifting and knocking movements- and their morphs were utilised for this study. We used a rapid event related fMRI adaptation paradigm, in which fMRI responses to two sequentially repeated stimuli are lower than for different stimuli. We begun by functionally localising the brain areas involved in the imitation of human movement. We then looked at the MR signal under the different experimental conditions during the event related scans. In a first experiment we investigated the basic adaptation effect; identical movements both in their action goals and kinematics were tested against movements that were different in both their goals and kinematics. Preliminary evidence suggests that prefrontal and parietal areas show adaptation under those different experimental conditions. Future experiments will test whether the parietal areas respond to different kinematics even when the goal of the movement is the same, by using the kinematics morphs.