English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Specific innervation of aromatase neurons by substance P fibers in the dorsal horn of the spinal cord in quail

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Evrard, H., Willems, E., Harada, A., & Balthazart, J. (2003). Specific innervation of aromatase neurons by substance P fibers in the dorsal horn of the spinal cord in quail. The Journal of Comparative Neurology, 465(2), 309-318. doi:10.1002/cne.10854.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DB2B-E
Abstract
The enzyme aromatase catalyzes the production of estrogens in the dorsal horn of the spinal cord where most of the nociceptive primary afferent fibers terminate. Numerous estrogen receptors are present in this area and the control of spinal aromatase activity is thought to play an important role in the estrogenic control of nociception. The coexistence of aromatase and nociceptive terminals suggests a role for aromatase cells in pain-related processes, but whether terminals releasing nociceptive neuropeptides (e.g., substance P) actually contact aromatase neurons is unknown and the factors that control spinal aromatase activity have not yet been identified. In the present study we analyzed by double-label immunocytochemistry the distribution in the Japanese quail spinal cord, of aromatase and of substance P or its receptor (neurokinin 1 receptor). All antigens were mainly localized in laminae I and II as observed in mammals. Most aromatase neurons were colocalized with neurokinin 1 receptors and were in close apposition with substance P-immunoreactive fibers. These results suggest that aromatase neurons are responsive to noxious stimulation and may participate in the control of nociception. Furthermore, spinal aromatase activity could be controlled by substance P through a regulation of the aromatase gene transcription as reported for the mouse diencephalon and/or through neurokinin 1 receptor-dependent phosphorylation of the aromatase protein.