de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

MR imaging in the non-human primate: studies of function and of dynamic connectivity

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Logothetis, N. (2003). MR imaging in the non-human primate: studies of function and of dynamic connectivity. Current Opinion in Neurobiology, 13(5), 630–642. doi:10.1016/j.conb.2003.09.017.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-DB27-5
Abstract
Since its early development in the late 1940s, nuclear magnetic resonance has become a powerful tool for applications ranging from chemical analysis or the study of the structure of solids to biomedical investigations. In the early 1990s the potential of this technique for functional brain mapping was demonstrated, causing unprecedented excitement in both basic and clinical neuroscience. It was shown that by using the appropriate pulse sequences the so-called functional magnetic resonance imaging (fMRI) technique can be made sensitive to local magnetic susceptibility alterations produced by changes in the concentration of deoxyhemoglobin in venous blood vessels. This blood-oxygenation-level-dependent (BOLD) contrast mechanism was successfully implemented in awake human subjects, in small animals, and recently in the non-human primate — the experimental animal of choice for the study of cognitive behavior. Simultaneous imaging and electrode recordings promise new insights into the mechanisms by which large-scale networks in the brain contribute to the local neural activity recorded at a given cortical site. Moreover, the use of MRI-visible tracers and of electrical microstimulation applied during imaging proves to be ideal for the study of connectivity in the living animal.