de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

FMRI of the auditory system: understanding the neural basis of auditory gestalt

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84187

Esposito F, Scarabino T, Formisano E, Marciano E, Saulino C, Cirillo S, Elefante R, Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

di Salle, F., Esposito F, Scarabino T, Formisano E, Marciano E, Saulino C, Cirillo S, Elefante R, Scheffler, K., & Seifritz, E. (2003). FMRI of the auditory system: understanding the neural basis of auditory gestalt. Magnetic Resonance Imaging, 21(10), 1213-1224. doi:10.1016/j.mri.2003.08.023.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-DA95-4
Abstract
Functional magnetic resonance imaging (fMRI) has rapidly become the most widely used imaging method for studying brain functions in humans. This is a result of its extreme flexibility of use and of the astonishingly detailed spatial and temporal information it provides. Nevertheless, until very recently, the study of the auditory system has progressed at a considerably slower pace compared to other functional systems. Several factors have limited fMRI research in the auditory field, including some intrinsic features of auditory functional anatomy and some peculiar interactions between fMRI technique and audition. A well known difficulty arises from the high intensity acoustic noise produced by gradient switching in echo-planar imaging (EPI), as well as in other fMRI sequences more similar to conventional MR sequences. The acoustic noise interacts in an unpredictable way with the experimental stimuli both from a perceptual point of view and in the evoked hemodynamics. To overcome this problem, different approaches have been proposed recently that generally require careful tailoring of the experimental design and the fMRI methodology to the specific requirements posed by the auditory research. The novel methodological approaches can make the fMRI exploration of auditory processing much easier and more reliable, and thus may permit filling the gap with other fields of neuroscience research. As a result, some fundamental neural underpinnings of audition are being clarified, and the way sound stimuli are integrated in the auditory gestalt are beginning to be understood.