de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Gaussian Processes in Machine Learning

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84156

Rasmussen,  CE
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Rasmussen, C. (2004). Gaussian Processes in Machine Learning.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-F365-A
Abstract
We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.