English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Some observations on the effects of slant and texture type on slant-from-texture

MPS-Authors
/persons/resource/persons84314

Wichmann,  FA
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rosas, P., Wichmann, F., & Wagemans, J. (2004). Some observations on the effects of slant and texture type on slant-from-texture. Vision Research, 44(13), 1511-1535. doi:10.1016/j.visres.2004.01.013.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-F3BF-F
Abstract
We measure the performance of five subjects in a slant-discrimination task for differently textured planes. As textures we used uniform lattices, randomly displaced lattices, circles (polka dots), Voronoi tessellations, plaids, 1/f noise, “coherent” noise and a leopard skin-like texture. Our results show: (1) Improving performance with larger slants for all textures. (2) Thus, following from (1), cases of “non-symmetrical” performance around a particular orientation. (3) For orientations sufficiently slanted, the different textures do not elicit major differences in performance, (4) while for orientations closer to the vertical plane there are marked differences between them. (5) These differences allow a rank-order of textures to be formed according to their “helpfulness”– that is, how easy the discrimination task is when a particular texture is mapped on the plane. Polka dots tend to allow the best slant discrimination performance, noise patterns the worst. Two additional experiments were conducted to test the generality of the obtained rank-order. First, the tilt of the planes was rotated to break the axis of gravity present in the original discrimination experiment. Second, the task was changed to a slant report task via probe adjustment. The results of both control experiments confirmed the texture-based rank-order previously obtained. We comment on the importance of these results for depth perception research in general, and in particular the implications our results have for studies of cue combination (sensor fusion) using texture as one of the cues involved.