de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Protein homology detection using string alignment kernels

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84183

Saigo,  H
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Saigo, H., Vert J-P, Ueda, N., & Akutsu, T. (2004). Protein homology detection using string alignment kernels. Bioinformatics, 20(11), 1682-1689. doi:10.1093/bioinformatics/bth141.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-F3D1-3
Zusammenfassung
Remote homology detection between protein sequences is a central problem in computational biology. Discriminative methods involving support vector machines (SVM) are currently the most effective methods for the problem of superfamily recognition in the SCOP database. The performance of SVMs depend critically on the kernel function used to quantify the similarity between sequences. We propose new kernels for strings adapted to biological sequences, which we call local alignment kernels. These kernels measure the similarity between two sequences by summing up scores obtained from local alignments with gaps of the sequences. When tested in combination with SVM on their ability to recognize SCOP superfamilies on a benchmark dataset, the new kernels outperform state-of-the art methods for remote homology detection.