English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Attentional modulation of human auditory cortex

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Petkov, C., Kang, X., Alho, K., Bertrand, O., Yund, E., & Woods, D. (2004). Attentional modulation of human auditory cortex. Nature Neuroscience, 7(6), 658-663. doi:10.1038/nn1256.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-DA53-7
Abstract
Attention powerfully influences auditory perception, but little is understood about the mechanisms whereby attention sharpens responses to unattended sounds. We used high-resolution surface mapping techniques (using functional magnetic resonance imaging, fMRI) to examine activity in human auditory cortex during an intermodal selective attention task. Stimulus-dependent activations (SDAs), evoked by unattended sounds during demanding visual tasks, were maximal over mesial auditory cortex. They were tuned to sound frequency and location, and showed rapid adaptation to repeated sounds. Attention-related modulations (ARMs) were isolated as response enhancements that occurred when subjects performed pitch-discrimination tasks. In contrast to SDAs, ARMs were localized to lateral auditory cortex, showed broad frequency and location tuning, and increased in amplitude with sound repetition. The results suggest a functional dichotomy of auditory cortical fields: stimulus-determined mesial fields that faithfully transmit acoustic information, and attentionally labile lateral fields that analyze acoustic features of behaviorally relevant sounds.