de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Multisensory integration in the estimation of relative path length

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84378

Campos,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sun, H., Campos, J., & Chan, G. (2004). Multisensory integration in the estimation of relative path length. Experimental Brain Research, 154(2), 246-254. doi:10.1007/s00221-003-1652-9.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-DA35-D
Abstract
One of the fundamental requirements for successful navigation through an environment is the continuous monitoring of distance travelled. To do so, humans normally use one or a combination of visual, proprioceptive/efferent, vestibular, and temporal cues. In the real world, information from one sensory modality is normally congruent with information from other modalities; hence, studying the nature of sensory interactions is often difficult. In order to decouple the natural covariation between different sensory cues, we used virtual reality technology to vary the relation between the information generated from visual sources and the information generated from proprioceptive/efferent sources. When we manipulated the stimuli such that the visual information was coupled in various ways to the proprioceptive/efferent information, human subjects predominantly used visual information to estimate the ratio of two traversed path lengths. Although proprioceptive/efferent information was not used directly, the mere availability of proprioceptive information increased the accuracy of relative path length estimation based on visual cues, even though the proprioceptive/efferent information was inconsistent with the visual information. These results convincingly demonstrated that active movement (locomotion) facilitates visual perception of path length travelled.