de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Kamerakalibrierung und Tiefenschätzung: Ein Vergleich von klassischer Bündelblockausgleichung und statistischen Lernalgorithmen

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84226

Sinz,  FH
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sinz, F.(2004). Kamerakalibrierung und Tiefenschätzung: Ein Vergleich von klassischer Bündelblockausgleichung und statistischen Lernalgorithmen.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D9B7-F
Abstract
Die Arbeit verleicht zwei Herangehensweisen an das Problem der Schätzung der räumliche Position eines Punktes aus den Bildkoordinaten in zwei verschiedenen Kameras. Die klassische Methode der Bündelblockausgleichung modelliert zwei Einzelkameras und schätzt deren äußere und innere Orientierung mit einer iterativen Kalibrationsmethode, deren Konvergenz sehr stark von guten Startwerten abhängt. Die Tiefenschätzung eines Punkts geschieht durch die Invertierung von drei der insgesamt vier Projektionsgleichungen der Einzalkameramodelle. Die zweite Methode benutzt Kernel Ridge Regression und Support Vector Regression, um direkt eine Abbildung von den Bild- auf die Raumkoordinaten zu lernen. Die Resultate zeigen, daß der Ansatz mit maschinellem Lernen, neben einer erheblichen Vereinfachung des Kalibrationsprozesses, zu höheren Positionsgenaugikeiten führen kann.