de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Hilbertian Metrics and Positive Definite Kernels on Probability Measures

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83958

Hein,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83824

Bousquet,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hein, M., & Bousquet, O.(2004). Hilbertian Metrics and Positive Definite Kernels on Probability Measures (126).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D8B1-3
Abstract
We investigate the problem of defining Hilbertian metrics resp. positive definite kernels on probability measures, continuing previous work. This type of kernels has shown very good results in text classification and has a wide range of possible applications. In this paper we extend the two-parameter family of Hilbertian metrics of Topsoe such that it now includes all commonly used Hilbertian metrics on probability measures. This allows us to do model selection among these metrics in an elegant and unified way. Second we investigate further our approach to incorporate similarity information of the probability space into the kernel. The analysis provides a better understanding of these kernels and gives in some cases a more efficient way to compute them. Finally we compare all proposed kernels in two text and one image classification problem.