de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Rapid Regulation of Pain by Estrogens Synthesized in Spinal Dorsal Horn Neurons

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83908

Evrard,  HC
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Evrard, H. (2004). Rapid Regulation of Pain by Estrogens Synthesized in Spinal Dorsal Horn Neurons. Journal of Neuroscience, 24(33), 7225-7229. doi:10.1523/JNEUROSCI.1638-04.2004.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D819-E
Abstract
In addition to exerting genomic actions via nuclear receptors within hours to days, estrogens also regulate neuronal activity much faster (within seconds) by activating neuronal membrane receptors coupled to intracellular second-messenger pathways. To date, the origin of estrogens inducing rapid effects in the brain remains unclear, although it is often ascribed to the gonads. We report here that an acute blockade of the endogenous synthesis of estrogens in the quail spinal dorsal horn markedly reduced, within 1 min, the behavioral responsiveness to a thermal painful stimulus. Similar rapid effects in the opposite direction were induced by estradiol. This finding identifies a new paracrine and nongenomic mechanism for the regulation of pain by estrogens. Such regulation was assumed previously to result only from slow genomic actions of estrogens arising from the ovaries. Also, quite importantly, this finding suggests that the numerous rapid nongenomic effects of estrogens in the CNS could depend on their immediate local production by the enzyme aromatase, independently from the gonads.