de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Robust ICA for Super-Gaussian Sources

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83954

Harmeling,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84096

Müller,  K-R
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Meinecke, F., Harmeling, S., & Müller, K.-R. (2004). Robust ICA for Super-Gaussian Sources. Independent Component Analysis and Blind Signal Separation: Fifth International Conference (ICA 2004), 217-224.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D7A9-1
Abstract
Most ICA algorithms are sensitive to outliers. Instead of robustifying existing algorithms by outlier rejection techniques, we show how a simple outlier index can be used directly to solve the ICA problem for super-Gaussian source signals. This ICA method is outlier-robust by construction and can be used for standard ICA as well as for over-complete ICA (i.e. more source signals than observed signals (mixtures)).