de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Short- and Long-Term Effects of Cholinergic Modulation on Gamma Oscillations and Response Synchronization in the Visual Cortex

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84098

Munk,  MHJ
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Rodriguez, R., Kallenbach U, Singer, W., & Munk, M. (2004). Short- and Long-Term Effects of Cholinergic Modulation on Gamma Oscillations and Response Synchronization in the Visual Cortex. Journal of Neuroscience, 24(46), 10369-10378. doi:10.1523/JNEUROSCI.1839-04.2004.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D765-A
Abstract
Neurons can engage in synchronized oscillatory activity in the gamma-frequency range when responding to sensory stimuli. Both the oscillatory patterning and the synchronization of responses are enhanced with arousal and attention or when the electroencephalogram is activated by electrical stimulation of the mesencephalic reticular formation. Here we show with intracortical application of cholinergic antagonists that the enhancement of gamma oscillations and response synchronization is mediated by acetylcholine and muscarinic receptors. We demonstrate further that coapplication of cholinergic agonists with synchrony-inducing light stimuli causes a lasting increase in the probability that the stimulated cells engage in gamma oscillations and response synchronization. These changes develop slowly over tens of minutes and then persist for many hours. Thus, cholinergic modulation plays a crucial role both in the fast, state-dependent facilitation of gamma oscillations and response synchronization and in use-dependent long-term modifications of cortical dynamics that favor synchronization of responses in the gamma-frequency range.