de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Implicit Surface Modelling as an Eigenvalue Problem

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84294

Walder,  C
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83855

Chapelle,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Walder, C., Chapelle, O., & Schölkopf, B. (2005). Implicit Surface Modelling as an Eigenvalue Problem. In ICML Bonn (pp. 937).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D6DB-8
Abstract
We discuss the problem of fitting an implicit shape model to a set of points sampled from a co-dimension one manifold of arbitrary topology. The method solves a non-convex optimisation problem in the embedding function that defines the implicit by way of its zero level set. By assuming that the solution is a mixture of radial basis functions of varying widths we attain the globally optimal solution by way of an equivalent eigenvalue problem, without using or constructing as an intermediate step the normal vectors of the manifold at each data point. We demonstrate the system on two and three dimensional data, with examples of missing data interpolation and set operations on the resultant shapes.