de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83958

Hein,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons76237

von Luxburg,  U
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Hein, M., Audibert, J., & von Luxburg, U. (2005). From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians. In Conference on Learning Theory (pp. 470-485).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D6D7-0
Abstract
In the machine learning community it is generally believed that graph Laplacians corresponding to a finite sample of data points converge to a continuous Laplace operator if the sample size increases. Even though this assertion serves as a justification for many Laplacian-based algorithms, so far only some aspects of this claim have been rigorously proved. In this paper we close this gap by establishing the strong pointwise consistency of a family of graph Laplacians with data-dependent weights to some weighted Laplace operator. Our investigation also includes the important case where the data lies on a submanifold of R^d.