de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effects of rearranged Vision on Event-related Lateralizations of the EEG during Pointing

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83803

Berndt,  I
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84990

Franz,  VH
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84662

Götz,  KG
Neurophysiologie des Insektenverhaltens, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Berndt, I., Franz, V., Bülthoff, H., Götz, K., & Wascher, E. (2005). Effects of rearranged Vision on Event-related Lateralizations of the EEG during Pointing. Biological Psychology, 68(1), 15-39. doi:10.1016/j.biopsycho.2004.03.016.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D67F-9
Abstract
We used event-related lateralizations of the EEG (ERLs) and reversed vision to study visuomotor processing with conflicting proprioceptive and visual information during pointing. Reversed vision decreased arm-related lateralization, probably reflecting the simultaneous activity of left and right arm specific neurons: Neurons in the hemisphere contralateral to the observed action were probably activated by visual feedback, neurons in the hemisphere contralateral to the response side by the somatomotor feedback. Lateralization related to the target in parietal cortex increased, indicating that visual to motor transformation in parietal cortex required additional time and resources with reversed vision. A short period of adaptation to an additional lateral displacement of the visual field increased arm-contralateral activity in parietal cortex during the movement. This is in agreement with the Clower et al. study (1996), which showed that adaptation to a lateral displacement of the visual field is reflected in increased parietal involvement during pointing. Key words: EEG, event-related lateralizations, reversed vision, pointing