de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Material Properties Determine How we Integrate Shape Signals in Active Touch

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84862

Drewing,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83906

Ernst,  MO
Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84316

Wiecki,  T
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Drewing, K., Ernst, M., & Wiecki, T. (2005). Material Properties Determine How we Integrate Shape Signals in Active Touch. In 1st Joint Worldhaptic Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WorldHaptics 2005) (pp. 1-6).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D5F9-C
Zusammenfassung
When sliding a finger across a bumpy surface, the finger follows the surface geometry (position signal). At the same time the finger is exposed to forces related to the slope of the surface (force signal) [1]. For haptic shape perception the brain uses both signals integrating them by weighted averaging [2]. This is consistent with the Maximum-Likelihood-Estimate (MLE) model on signal integration, previously only applied to passive perception. The model further predicts that signal weight is proportional to signal reliability. Here, we tested this prediction for the integration of force and position signals to perceived curvature by manipulating material properties of the curve. Low as compared to high compliance decreased the reliability and so the weight of the sensorily transduced position signal. High as compared to low friction decreased the reliability and so the weight of the transduced force signal. These results demonstrat that the MLE model extends to situations involving active touch.