de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optimal filtering for spike sorting of multi-site electrode recordings

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84098

Munk,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vollgraf, R., Munk, M., & Obermayer, K. (2005). Optimal filtering for spike sorting of multi-site electrode recordings. Network: Computation in Neural Systems, 16(1), 85-113. doi:10.1080/09548980500275378.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D5EB-E
Zusammenfassung
We derive an optimal linear filter, to reduce the distortions of the peak amplitudes of action potentials in extracellular multitrode recordings, which are due to background activity and overlapping spikes. This filter is being learned very efficiently from the raw recordings in an unsupervised manner and responds to the average waveform with an impulse of minimal width. The average waveform does not have to be known in advance, but is learned together with the optimal filter. The peak amplitude of a filtered waveform is a more reliable estimate for the amplitude of an action potential than the peak of the biphasic waveform and can improve the accuracy of the event detection and clustering procedures. We demonstrate a spike-sorting application, in which events are detected using the Mahalanobis distance in the N-dimensional space of filtered recordings as a distance measure, and the event amplitudes of the filtered recordings are clustered to assign events to individual units. This method is fast and robust, and we show its performance by applying it to real tetrode recordings of spontaneous activity in the visual cortex of an anaesthetized cat and to realistic artificial data derived therefrom.