de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Is an internal model of head orientation necessary for oculomotor control?

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83796

Barnett-Cowan,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Barnett-Cowan, M., Dyde, R., & Harris, L. (2005). Is an internal model of head orientation necessary for oculomotor control? Annals of the New York Academy of Sciences, 1039, 314-324. doi:10.1196/annals.1325.030.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D5E5-9
Abstract
In order to test whether the control of eye movement in response to head movement requires an internal model of head orientation or instead can rely on directly sensing information about head orientation and movement, perceived gravity was separated from physical gravity to see which dominated the eye-movement response. Internal model theory suggests that the oculomotor response should be driven by perceived, internalized gravity, whereas the direct sensing theory predicts it should always be driven by vestibularly sensed gravity. Subjects lay on an airbed either supine or on their side and were sinusoidally translated along their dorsoventral body axis. The direction of perceived gravity was separated from physical gravity by performing the experiments in a room built on its side with the direction of its "floor" orthogonal to both physical gravity and the subjectlsquo;s translation. The swinging sum of the imposed sinusoidal acceleration with physical gravity was thus in a plane orthogon al t o its sum with perceived gravity. Oculomotor responses to these swinging vectors were looked for and responses were found only to the sum of the acceleration with physical gravity, not perceived gravity. It was concluded that an internal model is not used to drive these compensatory eye movements.