de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Acetylcholine dynamically controls spatial integration in marmoset visual cortex

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84080

Zinke W, Guo K, Robertson R, McDonald,  JS
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Roberts, M., Zinke W, Guo K, Robertson R, McDonald, J., & Thiele, A. (2005). Acetylcholine dynamically controls spatial integration in marmoset visual cortex. Journal of Neuroscience, 93(4), 2062-2072. doi:10.1152/jn.00911.2004.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-D5C1-A
Zusammenfassung
Recent in vitro studies have shown that acetylcholine (ACh) selectively reduces the efficacy of lateral cortical connections via a muscarinic mechanism, while boosting the efficacy of thalamocortical/feed-forward connections via a nicotinic mechanism. This suggests that high levels of ACh should reduce center-surround interactions of neurons in primary visual cortex, making cells more reliant on feed-forward information. In line with this hypothesis, we show that local iontophoretic application of ACh in primate primary visual cortex reduced the extent of spatial integration, assessed by recording a neurons‘ length tuning. When ACh was externally applied, neurons‘ preferred length shifted toward shorter bars, showing reduced impact of the extra-classical receptive field. We fitted a difference and a ratio of Gaussian model to these data to determine the underlying mechanisms of this dynamic change of spatial integration. These models assume overlapping summation and suppression areas with different widths and gains to be responsible for spatial integration and size tuning. ACh significantly reduced the extent of the summation area, but had no significant effect on the extent of the suppression area. In line with previous studies, we also show that applying ACh enhanced the response in the majority of cells, especially in the later (sustained) part of the response. These findings are similar to effects of attention on neuronal activity. The natural release of ACh is strongly linked with states of arousal and attention. Our results may therefore be relevant to the neurobiological mechanism of attention.