English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A binocular rivalry study of motion perception in the human brain

MPS-Authors
/persons/resource/persons84091

Moutoussis,  K
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84007

Keliris,  GA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84023

Kourtzi,  Z
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Moutoussis, K., Keliris, G., Kourtzi, Z., & Logothetis, N. (2005). A binocular rivalry study of motion perception in the human brain. Vision Research, 45(17), 2231-2243. doi:10.1016/j.visres.2005.02.007.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-D4A1-D
Abstract
The relationship between brain activity and conscious visual experience is central to our understanding of the neural mechanisms underlying perception. Binocularrivalry, where monocular stimuli compete for perceptual dominance, has been previously used to dissociate the constant stimulus from the varying percept. We report here fMRI results from humans experiencing binocularrivalry under a dichoptic stimulation paradigm that consisted of two drifting random dot patterns with different motion coherence. Each pattern had also a different color, which both enhanced rivalry and was used for reporting which of the two patterns was visible at each time. As the perception of the subjects alternated between coherent motion and motion noise, we examined the effect that these alternations had on the strength of the MR signal throughout the brain. Our results demonstrate that motionperception is able to modulate the activity of several of the visual areas which are known to be involved in motion processing. More specifically, in addition to area V5 which showed the strongest modulation, a higher activity during the perception of motion than during the perception of noise was also clearly observed in areas V3A and LOC, and less so in area V3. In previous studies, these areas had been selectively activated by motion stimuli but whether their activity reflects motionperception or not remained unclear; here we show that they are involved in motionperception as well. The present findings therefore suggest a lack of a clear distinction between ‘processing’ versus ‘perceptual’ areas in the brain, but rather that the areas involved in the processing of a specific visual attribute are also part of the neuronal network that is collectively responsible for its perceptual representation.