Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Support Vector Machines for 3D Shape Processing

MPG-Autoren
/persons/resource/persons84235

Steinke,  F
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Steinke, F., Schölkopf, B., & Blanz, V. (2005). Support Vector Machines for 3D Shape Processing. Computer Graphics Forum, 24(3), 285-294.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D431-7
Zusammenfassung
We propose statistical learning methods for approximating implicit surfaces and computing dense 3D deformation fields. Our approach is based on Support Vector (SV) Machines, which are state of the art in machine learning. It is straightforward to implement and computationally competitive; its parameters can be automatically set using standard machine learning methods.
The surface approximation is based on a modified Support Vector regression. We present applications to 3D head reconstruction, including automatic removal of outliers and hole filling.
In a second step, we build on our SV representation to compute dense 3D deformation fields between two objects.
The fields are computed using a generalized SVMachine enforcing correspondence between the previously learned implicit SV object representations, as well as correspondences between feature points if such points are available.
We apply the method to the morphing of 3D heads and other objects.