de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Imaging input and output of neocortical networks in vivo

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84010

Kerr,  JND
Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83945

Greenberg,  D
Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kerr, J., Greenberg, D., & Helmchen, F. (2005). Imaging input and output of neocortical networks in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14063-14068. doi:10.1073/pnas.0506029102.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D41F-6
Abstract
Neural activity manifests itself as complex spatiotemporal activation patterns in cell populations. Even for local neural circuits, a comprehensive description of network activity has been impossible so far. Here we demonstrate that two-photon calcium imaging of bulk-labeled tissue permits dissection of local input and output activities in rat neocortex in vivo. Besides astroglial and neuronal calcium transients, we found spontaneous calcium signals in the neuropil that were tightly correlated to the electrocorticogram. This optical encephalogram (OEG) is shown to represent bulk calcium signals in axonal structures, thus providing a measure of local input activity. Simultaneously, output activity in local neuronal populations could be derived from action potential-evoked calcium transients with single-spike resolution. By using these OEG and spike activity measures, we characterized spontaneous activity during cortical Up states. We found that (i) spiking activity is sparse (