Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Maximal Margin Classification for Metric Spaces

MPG-Autoren
/persons/resource/persons83958

Hein,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83824

Bousquet,  O
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hein, M., Bousquet, O., & Schölkopf, B. (2005). Maximal Margin Classification for Metric Spaces. Journal of Computer and System Sciences, 71(3), 333-359. doi:10.1016/j.jcss.2004.10.013.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D3F9-2
Zusammenfassung
In order to apply the maximum margin method in arbitrary metric
spaces, we suggest to embed the metric space into a Banach or
Hilbert space and to perform linear classification in this space.
We propose several embeddings and recall that an isometric embedding
in a Banach space is always possible while an isometric embedding in
a Hilbert space is only possible for certain metric spaces. As a
result, we obtain a general maximum margin classification
algorithm for arbitrary metric spaces (whose solution is
approximated by an algorithm of Graepel.
Interestingly enough, the embedding approach, when applied to a metric
which can be embedded into a Hilbert space, yields the SVM
algorithm, which emphasizes the fact that its solution depends on
the metric and not on the kernel. Furthermore we give upper bounds
of the capacity of the function classes corresponding to both
embeddings in terms of Rademacher averages. Finally we compare the
capacities of these function classes directly.