de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Spatiotemporal characteristics of form analysis in the human visual cortex revealed by rapid event-related fMRI adaptation

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84023

Kourtzi,  Z
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83984

Huberle,  E
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Kourtzi, Z., & Huberle, E. (2005). Spatiotemporal characteristics of form analysis in the human visual cortex revealed by rapid event-related fMRI adaptation. NeuroImage, 28(2), 440-452. doi:10.1016/j.neuroimage.2005.06.017.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D39B-3
Abstract
The integration of local elements to coherent forms is at the core of understanding visual perception. Accumulating evidence suggests that both early retinotopic and higher occipitotemporal areas contribute to the integration of local elements to global forms. However, the spatiotemporal characteristics of form analysis in the human visual cortex remain largely unknown. The aim of this study was to investigate form analysis at different spatial (global vs. local structure) and temporal (different stimulus presentation rates) scales across stages of visual analysis (from V1 to the lateral occipital complex—LOC) in the human brain. We used closed contours rendered by Gabor elements and manipulated either the global contour structure or the orientation of the local Gabor elements. Our rapid event-related fMRI adaptation studies suggest that contour integration and form processing in early visual areas is transient and limited within the local neighborhood of their cells' receptive field. In contrast, higher visual areas appear to process the perceived global form in a more sustained manner. Finally, we demonstrate that these spatiotemporal properties of form processing in the visual cortex are modulated by attention. Attention to the global form maintains sustained processing in occipitotemporal areas, whereas attention to local elements enhances their integration in early visual areas. These findings provide novel neuroimaging evidence for form analysis at different spatiotemporal scales across human visual areas and validate the use of rapid event-related fMRI adaptation for investigating processing across stages of visual analysis in the human brain.