de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Infinite dimensional exponential families by reproducing kernel Hilbert spaces

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83923

Fukumizu,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Fukumizu, K. (2005). Infinite dimensional exponential families by reproducing kernel Hilbert spaces. Proceedings of the 2nd International Symposium on Information Geometry and its Applications (IGAIA 2005), 324-333.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D373-C
Abstract
The purpose of this paper is to propose a method of constructing exponential families of Hilbert manifold, on which estimation theory can be built. Although there have been works on infinite dimensional exponential families of Banach manifolds (Pistone and Sempi, 1995; Gibilisco and Pistone, 1998; Pistone and Rogantin, 1999), they are not appropriate to discuss statistical estimation with finite number of samples; the likelihood function with finite samples is not continuous on the manifold. In this paper we use a reproducing kernel Hilbert space as a functional space for constructing an exponential manifold. A reproducing kernel Hilbert space is dened as a Hilbert space of functions such that evaluation of a function at an arbitrary point is a continuous functional on the Hilbert space. Since we can discuss the value of a function with this space, it is very natural to use a manifold associated with a reproducing kernel Hilbert space as a basis of estimation theory. We focus on the maximum likelihood estimation (MLE) with the exponential manifold of a reproducing kernel Hilbert space. As in many non-parametric estimation methods, straightforward extension of MLE to an infinite dimensional exponential manifold suffers the problem of ill-posedness caused by the fact that the estimator should be chosen from the infinite dimensional space with only finite number of constraints given by the data. To solve this problem, a pseudo-maximum likelihood method is proposed by restricting the infinite dimensional manifold to a series of finite dimensional submanifolds, which enlarge as the number of samples increases. Some asymptotic results in the limit of infinite samples are shown, including the consistency of the pseudo-MLE.