de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Adaptive Stimulus Optimization for Auditory Cortical Neurons

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons84136

Petkov,  CI
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons84136

Sutter,  ML
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

O'Connor, K., Petkov, C., & Sutter, M. (2005). Adaptive Stimulus Optimization for Auditory Cortical Neurons. Journal of Neurophysiology, 94(6), 4051-4067. doi:10.​1152/​jn.​00046.​2005.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D363-0
Abstract
Despite the extensive physiological work performed on auditory cortex, our understanding of the basic functional properties of auditory cortical neurons is incomplete. For example, it remains unclear what stimulus features are most important for these cells. Determining these features is challenging given the considerable size of the relevant stimulus parameter space as well as the unpredictable nature of many neurons' responses to complex stimuli due to nonlinear integration across frequency. Here we used an adaptive stimulus optimization technique to obtain the preferred spectral input for neurons in macaque primary auditory cortex (AI). This method uses a neuron's response to progressively modify the frequency composition of a stimulus to determine the preferred spectrum. This technique has the advantage of being able to incorporate nonlinear stimulus interactions into a "best estimate" of a neuron's preferred spectrum. The resulting spectra displayed a consistent, relatively simple circumscribed form that was similar across scale and frequency in which excitation and inhibition appeared about equally prominent. In most cases, this structure could be described using two simple models, the Gabor and difference of Gaussians functions. The findings indicate that AI neurons are well suited for extracting important scale-invariant features in sound spectra and suggest that they are designed to efficiently represent natural sounds.