de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Class prediction from time series gene expression profiles using dynamical systems kernels

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons75313

Borgwardt,  KM
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Borgwardt, K., Vishwanathan, S., & Kriegel, H.-P. (2006). Class prediction from time series gene expression profiles using dynamical systems kernels. In Pacific Symposium on Biocomputing (PSB 2006) (pp. 547-558). Singapore: World Scientific.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-D319-9
Abstract
We present a kernel-based approach to the classification of time series of gene expression profiles. Our method takes into account the dynamic evolution over time as well as the temporal characteristics of the data. More specifically, we model the evolution of the gene expression profiles as a Linear Time Invariant (LTI) dynamical system and estimate its model parameters. A kernel on dynamical systems is then used to classify these time series. We successfully test our approach on a published dataset to predict response to drug therapy in Multiple Sclerosis patients. For pharmacogenomics, our method offers a huge potential for advanced computational tools in disease diagnosis, and disease and drug therapy outcome prognosis.